Caractérisation de l'incertitude de production éolienne

Stage de Master 2 ATSI

Pierre Haessig

Laboratoire des Signaux & Systèmes

23 juin 2011

Plan de la présentation

- Contexte et objectifs
 - Production de l'énergie électrique
 - Gestion de l'intermittence
- 2 Incertitude sur la machine
 - Présentation physique des données
 - Régression sur les données
- 3 Incertitude sur la prévision
 - Données initiales
 - Données transformées
- 4 Conclusion

Plan de la présentation

- Contexte et objectifs
 - Production de l'énergie électrique
 - Gestion de l'intermittence
- Incertitude sur la machine
- 3 Incertitude sur la prévision
- 4 Conclusion

Sources d'énergie fossiles

Plus de 80 % de la production mondiale d'électricité se fait dans des centrales thermiques.

Sources d'énergie fossiles Problèmes

Cela pose plusieurs types de problèmes :

- consommation de ressources non renouvelables
- émission de substances toxiques
- émission de gaz à effet de serre

Sources d'énergie renouvelables

Les énergies renouvelables évitent ces problèmes mais en introduisent un nouveau : grande variabilité de production.

Comment gérer cette intermittence?

Stockage d'énergie électrique

Un stockage est nécessaire pour réguler l'intermittence mais

- grande variété de technologies disponibles
- grande disparités de caractéristiques (capacité, puissance, ...)

Le choix doit être éclairé par une bonne connaissance du besoin

Prévision de la ressource

La prévision a pris une grande importance depuis 2000.

- Projets européens ANEMOS et ANEMOS.plus
- Metnext, fournisseur pour EDF SEI

Modélisations majoritairement non-linéaires, "boîte noire" ou "boîte grise"

Appel d'offre de la CRE

Pour dépasser les 30 % de d'électricité d'origine éolienne ou solaire

- Engagement sur la production ± 15 %, 24 heures à l'avance
- Le non-respect de l'engagement entraîne une pénalité.
- Stockage et Prévision doivent être associés.

C'est un problème d'optimisation.

Pour évaluer la fonction coût (capacité, vieillissement), on doit connaître les incertitudes en jeu.

Modélisation de l'incertitude

L'incertitude apparaît à deux niveaux...

... sur la machine & sur la prévision (avec des échelles temporelles différentes)

Plan de la présentation

- Contexte et objectifs
- 2 Incertitude sur la machine
 - Présentation physique des données
 - Régression sur les données
- Incertitude sur la prévision
- 4 Conclusion

Modes de fonctionnement d'une éolienne

La puissance mécanique varie non-linéairement avec le vent

Équation physique :

$$P_w = \frac{1}{2} \rho A_r c_p(\lambda, \theta) v^3$$

Présentation des données

4 jours d'acquisition à haute résolution : 400 000 points

Vent v et Puissance P ont des distributions très différentes

Sélection des données

On veut modéliser la relation $P_i \sim v_i^3$ (inspiration physique)

... valable pour le fonctionnement à vitesse variable :

$$\mathcal{D} = \{ (P_i, v_i) \in \mathbb{R}^2 \text{ tels que } P_i \in [1 \text{ kW}, 980 \text{ kW}] \}$$

Une première régression

Modèle de régression linéaire :

$$P = P_0 + \alpha . v^3 + \varepsilon$$

Problème : la variance des résidus ε n'est clairement pas constante : hétéroscédasticité conditionnelle

Une meilleure régression

Modèle de régression linéaire subtilement différent :

$$P^{1/3} = \beta_0 + \beta_1 \cdot \mathbf{v} + \varepsilon$$

Les résidus ε sont *homogènes au vent* : physiquement pertinent Leur variance semble *assez constante* : hypothèse à tester.

Intervalle de Confiance

On construit un IC de niveau $(1 - \alpha)$ sur $P^{1/3}$.

$$\mathcal{I}_{\alpha} = \left[\widehat{P^{1/3}}_{N+1} \pm t_{N-2}(1 - \alpha/2)\hat{\sigma}\right]$$

Cette inférence se base sur la gaussianité des résidus

Intervalle de Confiance

Transformation

L'IC construit sur $P^{1/3}$ se transforme facilement en IC sur P

On constate que sa largeur varie avec v: conditionnellement hétéroscédastique

Analyse des résidus Test de Breusch-Pagan

Test basé sur une régression des résidus estimés

$$\hat{\varepsilon}_i^2 = \gamma_0 + \gamma_1.v_i + \eta_i$$

- Hypothèse nulle H_0 : $\gamma_1 = 0$ ("homoscédasticité")
- Statistique de test : $BP = N.R^2 = 850,7...$
- ... asymptotiquement distribuée en $\chi^2(1)$ sous H_0

L'homoscédasticité est rejetée.

Plan de la présentation

- Contexte et objectifs
- 2 Incertitude sur la machine
- 3 Incertitude sur la prévision
 - Données initiales
 - Données transformées
- 4 Conclusion

La Prévision Metnext

Le producteur fournit quotidiennement à EDF une prévision $J\!+\!1$

- Mesure de puissance à chaque heure : P_i
- Prévision correspondant à la mesure : Q_i

Intervalle de confiance existant

Tracé de la relation $P_i \sim Q_i$:

- Intervalle de niveau inconnu (53 %, 63 %)
- Suppose la variance conditionnelle des erreurs constante

Transformation des données

On applique à la mesure P et à la prévision Q la transformation :

$$\Phi_{\gamma}: x \mapsto x^{1/\gamma} \quad \text{avec } \gamma > 0$$

Effet d'homogénéisation du nuage de points :

Choix du gamma

On veut régresser les données avec le modèle :

$$P_i^{1/\gamma} = \beta_0 + \beta_1 \cdot Q_i^{1/\gamma} + \varepsilon_i$$

On cherche γ tel que la statistique du test de Breusch–Pagan soit \min

Données transformées

On construit alors un IC sur les données transformées :

On peut choisir facilement le niveau de confiance $(1-\alpha)$

Plan de la présentation

- Contexte et objectifs
- 2 Incertitude sur la machine
- Incertitude sur la prévision
- 4 Conclusion

Importance de l'hétéroscédasticité conditionnelle

Pour les deux jeux de données :

- l'espace naturelle des variables conduit à une hétéroscédasticité conditionnelle
- une transformation simple permet de s'en affranchir
- on construit alors facilement un Intervalle de Confiance

Travaux futurs

Prendre en compte les aspects temporels

- Les erreurs de prévision sont fortement corrélées (75 % entre deux instants)
- Cette corrélation influe sur le dimensionnement d'un stockage (dans le sens d'une augmentation de la capacité)
- il faut donc modéliser cette corrélation