Caractérisation de l'incertitude de production éolienne

Stage de Master 2 ATSI

Pierre Haessig
Laboratoire des Signaux \& Systèmes

23 juin 2011

Plan de la présentation

(1) Contexte et objectifs

- Production de l'énergie électrique
- Gestion de l'intermittence
(2) Incertitude sur la machine
- Présentation physique des données
- Régression sur les données
(3) Incertitude sur la prévision
- Données initiales
- Données transformées

4 Conclusion

Plan de la présentation

(1) Contexte et objectifs

- Production de l'énergie électrique
- Gestion de l'intermittence
(2) Incertitude sur la machine
(3) Incertitude sur la prévision

4 Conclusion

Sources d'énergie fossiles

Plus de 80% de la production mondiale d'électricité se fait dans des centrales thermiques.

Sources d'énergie fossiles
 Problèmes

Cela pose plusieurs types de problèmes :

- consommation de ressources non renouvelables
- émission de substances toxiques
- émission de gaz à effet de serre

Sources d'énergie renouvelables

Les énergies renouvelables évitent ces problèmes mais en introduisent un nouveau : grande variabilité de production.

Comment gérer cette intermittence?

Stockage d'énergie électrique

Un stockage est nécessaire pour réguler l'intermittence mais

- grande variété de technologies disponibles
- grande disparités de caractéristiques (capacité, puissance, ...)

Le choix doit être éclairé par une bonne connaissance du besoin

Prévision de la ressource

La prévision a pris une grande importance depuis 2000.

- Projets européens ANEMOS et ANEMOS.plus
- Metnext, fournisseur pour EDF SEI

Modélisations majoritairement non-linéaires, "boîte noire" ou "boîte grise"

Appel d'offre de la CRE

Pour dépasser les 30% de d'électricité d'origine éolienne ou solaire

- Engagement sur la production $\pm 15 \%, 24$ heures à l'avance
- Le non-respect de l'engagement entraîne une pénalité.
- Stockage et Prévision doivent être associés.

C'est un problème d'optimisation.
Pour évaluer la fonction coût (capacité, vieillissement), on doit connaître les incertitudes en jeu.

Modélisation de l'incertitude

L'incertitude apparaît à deux niveaux. . .

... sur la machine \& sur la prévision (avec des échelles temporelles différentes)

Plan de la présentation

(1) Contexte et objectifs
(2) Incertitude sur la machine

- Présentation physique des données
- Régression sur les données
(3) Incertitude sur la prévision

4 Conclusion

Modes de fonctionnement d'une éolienne

La puissance mécanique varie non-linéairement avec le vent

Équation physique :

$$
P_{w}=\frac{1}{2} \rho A_{r} c_{p}(\lambda, \theta) v^{3}
$$

Présentation des données

4 jours d'acquisition à haute résolution: 400000 points

Vent v et Puissance P ont des distributions très différentes

Sélection des données

On veut modéliser la relation $P_{i} \sim v_{i}^{3}$ (inspiration physique)

... valable pour le fonctionnement à vitesse variable :

$$
\mathcal{D}=\left\{\left(P_{i}, v_{i}\right) \in \mathbb{R}^{2} \text { tels que } P_{i} \in[1 \mathrm{~kW}, 980 \mathrm{~kW}]\right\}
$$

Une première régression

Modèle de régression linéaire :

$$
P=P_{0}+\alpha \cdot v^{3}+\varepsilon
$$

Problème : la variance des résidus ε n'est clairement pas constante : hétéroscédasticité conditionnelle

Une meilleure régression

Modèle de régression linéaire subtilement différent :

$$
P^{1 / 3}=\beta_{0}+\beta_{1} \cdot v+\varepsilon
$$

Les résidus ε sont homogènes au vent : physiquement pertinent Leur variance semble assez constante : hypothèse à tester.

Intervalle de Confiance

On construit un IC de niveau $(1-\alpha)$ sur $P^{1 / 3}$.

$$
\mathcal{I}_{\alpha}=\left[\widehat{P^{1 / 3}} N+1 \pm t_{N-2}(1-\alpha / 2) \hat{\sigma}\right]
$$

Cette inférence se base sur la gaussianité des résidus

Intervalle de Confiance

Transformation
L'IC construit sur $P^{1 / 3}$ se transforme facilement en IC sur P

On constate que sa largeur varie avec v : conditionnellement hétéroscédastique

Analyse des résidus

Test de Breusch-Pagan

Test basé sur une régression des résidus estimés

$$
\hat{\varepsilon}_{i}^{2}=\gamma_{0}+\gamma_{1} \cdot v_{i}+\eta_{i}
$$

- Hypothèse nulle $H_{0}: \gamma_{1}=0$ ("homoscédasticité")
- Statistique de test: $B P=N . R^{2}=850,7 \ldots$
- ... asymptotiquement distribuée en $\chi^{2}(1)$ sous H_{0}

L'homoscédasticité est rejetée.

Plan de la présentation

(1) Contexte et objectifs
(2) Incertitude sur la machine
(3) Incertitude sur la prévision

- Données initiales
- Données transformées
(4) Conclusion

La Prévision Metnext

Le producteur fournit quotidiennement à EDF une prévision $\mathrm{J}+1$

- Mesure de puissance à chaque heure : P_{i}
- Prévision correspondant à la mesure : Q_{i}

Intervalle de confiance existant

Tracé de la relation $P_{i} \sim Q_{i}$:

Production vs. Prévision

- Intervalle de niveau inconnu (53 \%, 63 \%)
- Suppose la variance conditionnelle des erreurs constante

Transformation des données

On applique à la mesure P et à la prévision Q la transformation :

$$
\Phi_{\gamma}: x \mapsto x^{1 / \gamma} \quad \text { avec } \gamma>0
$$

Effet d'homogénéisation du nuage de points :

Choix du gamma

On veut régresser les données avec le modèle :

$$
P_{i}^{1 / \gamma}=\beta_{0}+\beta_{1} \cdot Q_{i}^{1 / \gamma}+\varepsilon_{i}
$$

On cherche γ tel que la statistique du test de Breusch-Pagan soit minimum

Données transformées

On construit alors un IC sur les données transformées:

On peut choisir facilement le niveau de confiance (1- 1)

Plan de la présentation

(1) Contexte et objectifs
(2) Incertitude sur la machine
(3) Incertitude sur la prévision
(4) Conclusion

Importance de l'hétéroscédasticité conditionnelle

Pour les deux jeux de données:

- l'espace naturelle des variables conduit à une hétéroscédasticité conditionnelle
- une transformation simple permet de s'en affranchir
- on construit alors facilement un Intervalle de Confiance

Production vs. Prévision (normalisée)

Travaux futurs

Prendre en compte les aspects temporels

- Les erreurs de prévision sont fortement corrélées (75 \% entre deux instants)
- Cette corrélation influe sur le dimensionnement d'un stockage (dans le sens d'une augmentation de la capacité)
- il faut donc modéliser cette corrélation

